Минимизация стоимостей перевозок



Московский Государственный Колледж

Информационных Технологий

Курсовой проект

по предмету

« Языки программирования и разработка программного обеспечения » на тему : « Минимизация стоимостей перевозок »

Работу выполнил Работу проверили студент группы П-407 Преподаватели Чубаков А.С. Капустина Р.Н. Токарев С.?.

1998 г.

??. 2203 81 - 21

ВВЕДЕНИЕ Развитие современного общества характеризуется повышением технического уровня , усложнением организационной структуры производства , углублением общественного разделения труда , предъявлением высоких требований к методам планирования и хозяйственного руководства. В этих условиях только научный подход к руководству к экономической жизни общества позволит обеспечить высокие темпы развития народного хозяйства. В настоящие время новейшие достижения математики и современной вычислительной техники находят все более широкие применение в экономических исследованиях и планированияx. Этому способствует развитие таких разделов математики . как математическое программирование , теория игр , теория массового обслуживания , а так же бурное развитие быстродействующей электронно - вычислительной техники. Одной из основных ставится задача создания единой системы оптимального планирования и управление народным хозяйством на базе широкого применения математических методов в электронно - вычислительной техники в экономике. Решение экстремальных экономических задач можно разбить на три этапа : 1. Построение экономико - математической задачи. 2. Нахождение оптимального решения одним из математических методов. 3. Промышленное внедрение в народное хозяйство. Построение экономическо - математической модели состоит в создании упрощенной математической модели , в которой в схематичной форме отражена структура изучаемого процесса. При этом особое внимание должно быть уделено отражении в модели всех существенных особенностей задачи и учет всех ограничивающих условий , которые могут повлиять на результат. Затем определяется цель решения , выбирается критерий оптимальности и дают математическую формулировку задачи. Составными частями математического программирования являются линейное , нелинейное и динамическое программирование. При исследовании в большинстве случаев имеют место задачи нелинейного программирования , аппроксимация их линейными задачами вызвана только тем , что последние хорошо изучены. Динамическое программирование как самостоятельная дисциплина сформулировалась в пятидесятых годах нашего века. Большой вклад в ее развитие внес американский математик Р. Бельман. Дальнейшие развитие динамическое программирование получило в трудах зарубежных ученых Робертса , Ланга и др. В настоящие время оно в основном развивается в планировании приложений к различным родам многоэтапным процессам.

??. 2203 81 21 2. ЭКОНОМИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

Производственное предприятие имеет в своем составе три филиала которые производят однородную продукцию соответственно в количествах , равных 50 , 30 и 10 единиц. Эту продукцию получают четыре потребителя , расположенных в разных местах. Их потребности соответственны равны 30 , 30 , 10 и 20 единиц. Тарифы перевозов единицы продукции от каждого филиалов соответствующим потребителям задаются матрицей :

1 2 4 1 Сij = 2 3 1 5 3 2 4 4

Составить такой план прикрепления получателе продукции к ее поставщикам , при котором общая стоимость перевозок будет минимальной.

КП. 2203 81 - 21 2.МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

2. Математическая модель задачи Имеется: m (i=1,2,…,m) филиалы. Ai количество единиц продукции «i» филиала. n (j=1,2,…,n) потребители Bj потребности «j» потребителя Cij стоимость перевозки 1 условной единицы продукции от «i» филиала к «j» потребителю

Ограничения:

1. Балансовое ограничение. Предполагается, что сумма всех запасов (ai) равна сумме всех заявок (bj):

2. Ресурсное ограничение.

Суммарное количество груза, направленного из каждого пункта отправления во все пункты назначения должно быть равно запасу груза в данном пункте. Это даст m условий равенств: или

3. Плановое ограничение.

Суммарное количество груза, доставляемого в каждый пункт назначения изо всех пунктов отправления должно быть равно заявке (bj) поданной данным пунктом. Это даст нам n условий равенств:

КП. 2203 81 - 21

или

4. Реальность плана перевозок. Перевозки не могут быть отрицательными числами:

5. Требуется составить такой план перевозок, при котором все заявки были бы выполнены и при этом общая стоимость всех перевозок была бы минимальна, поэтому целевая функция или критерий эффективности:

??. 2203 81 21 3.ВЫБОР МЕТОДА РЕАЛИЗАЦИИ ПРОДУКЦИИ. ОБОСНОВАНИЕ ВЫБОРА МЕТОДА. Симплекс - метод является универсальным и применяется для решения любых задач. Однако существуют некоторые частные типы задач линейного программирования , которые в силу некоторых особенностей своей структуры допускают решение более простыми методами. К ним относится транспортная задача. Распределительный метод решения транспортной задачи обладает одним недостатком : нужно отыскивать циклы для всех свободных клеток и находить их цены. От этой трудоемкой работы нас избавляет специальный метод решения транспортной задачи , который называется методом потенциалов. Он позволяет автоматически выделять циклы с отрицательной ценой и определять их цены. В отличии от общего случая ОЗЛП с произвольными ограничениями и минимизированной функцией , решение транспортной задачи всегда существует. Общий принцип определения оптимального плана транспортной задачи методом потенциалов аналогичен принципу решения задачи линейного программирования симплекс - метода ,. а именно : сначала находят опорный план транспортной задачи , а затем его улучшают до получения оптимального плана. Далее будет рассматриваться сам метод потенциалов. Решение транспортной задачи , как и любой другой задачи линейного программирования начинается с нахождения опорного решения , или , как мы говорим опорного плана. Для его нахождения созданы специальные методы , самым распространенным из них считается метод северо - западного угла. Определение значений xi,j начинается с левой верхней клетки таблицы. Находим значения x1,1 из соотношения x11 = mina1,b1. Если ai < b1 то x11=a1 , строка i=1 исключается из дальнейшего рассмотрения , а потребность первого потребителя b1 уменьшается на величину a1. Если a1>b1 , то x11=b1 , столбец j=1 исключается из дальнейшего рассмотрения , а наличие груза у первого поставщика a1 уменьшается на величину b1. Если a1=b1 , то x11=a1=b1 , строка i=1 и столбец j=1 исключаются из дальнейшего рассмотрения. Данный вариант приводит к вырождению исходного плана. Затем аналогичные операции проделывают с оставшийся частью таблицы , начиная с его северо - западного угла. После завершения оптимального

скачать реферат
1 2 3