Моделирование промышленной динамики в условиях переходной экономики
выражения результата, который может оказаться не вполне удобным.
Качество оценки: коэффициент R2
Цель регрессионного анализа состоит в объяснении поведения зависимой переменной. В любой данной выборке оказывается сравнительно низким в одних наблюдениях и сравнительно высоким в других. Мы хотим знать, почему это так. Разброс значений в любой выборке можно суммарно описать с помощью выборочной дисперсии Мы должны рассчитывать величину этой дисперсии.
В парном регрессионном анализе мы пытаемся объяснить поведение путем определения регрессионной зависимости от соответственно выбранной зависимой переменной. После построения уравнения регрессии мы можем разбить значение в каждом наблюдении на две составляющих и:
(1.5)
Величина расчетное значение в наблюдении i это то значение, которое имел бы при условии, что уравнение регрессии было правильным, и отсутствии случайного фактора. Это, иными словами, величина, спрогнозированная по значению в данном наблюдении. Тогда остаток есть расхождение между фактическим и спрогнозированным значениями величины. Это та часть, которую мы не можем объяснить с помощью уравнения регрессии.
Используя (1.5), разложим дисперсию:
(1.6)
Далее, оказывается, что должна быть равна нулю. Следовательно, мы получаем:
(1.7)
Это означает, что мы можем разложить на две части: часть, которая “объясняется” уравнением регрессии в вышеописанном смысле, и “необъясненную” часть1.
Согласно (3), это часть дисперсии, объясненная уравнением регрессии. Это отношение известно как коэффициент детерминации, и его обычно обозначают R2:
(1.8)
что равносильно
(1.9)
Максимальное значение коэффициента R2 равно единице. Это происходит в том случае, когда линия регрессии точно соответствует всем наблюдениям, так что для всех i и все остатки равны нулю. Тогда и R2=1.
Если в выборке отсутствует видимая связь между и, то коэффициент R2 будет близок к нулю.
При прочих равных условиях желательно, чтобы коэффициент R2 был как можно больше. В частности, мы заинтересованы в таком выборе коэффициентов a и b, чтобы максимизировать R2. Не противоречит ли это нашему критерию, в соответствие, с которым a и b должны быть выбраны таким образом, чтобы минимизировать сумму квадратов остатков? Что эти критерии эквивалентны, если (1.9) используется как определение коэффициента R2. Отметим сначала, что
(1.10)
откуда, беря среднее значение ei по выборке и используя уравнение
(1.11),
получим: . (1.12)
Следовательно,
(1.13)
Отсюда следует, что принцип минимизации суммы квадратов остатков эквивалентен минимизации дисперсии остатков при условии выполнения (1.12).
Однако если мы минимизируем то при этом в соответствии с (1.9) аавтоматически максимизируется коэффициент R2.
Альтернативное представление коэффициента R2.
На интуитивном уровне представляется очевидным, что чем больше соответствие, обеспечиваемое уравнением регрессии, тем больше должен быть коэффициент корреляции для фактических и прогнозных значений, и наоборот. Покажем, что R2 фактически равен квадрату такого коэффициента корреляции между и,который мы обозначим (заметим, что = 0):
Метод производных функций.
Взаимодействие различных факторов производства, в том числе научно-технического прогресса, на объем производства позволяет показать метод производственных функций. Это метод соизмерения результатов производства с затратами производственных ресурсов.
Производственные функции имеют такие характеристики, как общая эффективность технологии, эффект от изменения масштаба производства, трудоемкость технологии, эластичность замены факторов. Анализ этих характеристик позволяет правильно оценить как общую эффективность производства, так и сводную эффективность экзогенных факторов. Математический аппарат производственных функций позволяет достаточно легко переходить от специфических характеристик производственных функций к традиционным показателям эффективности производства, расчет которых строится на использовании показателей производительности труда, трудоемкости, фондоотдачи, конечных результатов производства, их приростных характеристиках.
Применение производственных функций в прогнозировании деятельности предприятия имеет свою специфику:
- обоснование выбора и выбор определенного вида производственной функции из очень обширного круга производственных функций, различных по сложности, используемому математическому аппарату и уровню агрегирования показателей;
- разработка аппарата оценки параметров и их оценка при помощи эмпирической информации для выбранной производственной функции;
- обеспечение правильности идентификации основных производственных факторов, соблюдение однородности факторов.
Использование аппарата производственных функций идет от простого к все более сложному. В частности приведены примеры использования функции CES, при помощи которой возможен анализ влияния научно-технического прогресса на экономический рост, структурные сдвиги в развитии экономики предприятия1. Производственные функции имеют некоторые недостатки, ограничивающие их применение. В частности для функции CES:
1) нужна осторожность в интерпретации меры экономии от масштаба;
2) возникают трудности в обобщении ее на n факторов производства;
3) параметры производственной функции трудно оценить.
ГЛАВА 2. Эконометрическая модель по временным рядам продукции, основных фондов и численности занятых
Имитационная модель, описывающая взаимосвязи производства, основных фондов и инвестиционных потоков предполагает наличие достаточно детальной информации. Учитывая особую актуальность и значимость для инвестиционной сферы проблемы наполнения бюджетов различных уровней, в модели предусмотрено вариантное прогнозирование вероятных налоговых поступлений. Предполагается увязка различных вариантов развития основных отраслей и крупных предприятий экономики города с налогооблагаемыми показателями (товарная, реализованная продукция, среднесписочная численность, фонд оплаты труда, стоимость имущества, балансовая прибыль и т.д.). На этой основе рассчитываются объемы причитающихся к уплате налогов (федеральных, областных и местных), а также отчислений во внебюджетные фонды. С другой стороны, возможна оценка влияния мер селективной поддержки (льготы, налоговый кредит и т.д.) на динамику развития отраслей, а значит, и на размер налогооблагаемых показателей и налоговые поступления (с учетом реальной возможности их уплаты). Модель также "достроена" регрессионными моделями для прогнозирования фактических налоговых поступлений. Модель ориентирована на действующую в РФ систему статистической и бухгалтерской отчетности.
В модели рассматриваются следующие субъекты хозяйствования, как предприятия (частные, товарищества, ООО, кооперативы; акционерные (ОАО, ЗАО); унитарные: а) федеральные; б) областные; в) муниципальной (городской) собственности).
В качестве объектов модели можно рассматривать крупные (наиболее значимые для экономики города) предприятия, остальное хозяйство города - в агрегированном виде.
Введем обозначения модели:
t
скачать реферат
1 2 3 4 5 6 7 ... последняя