Принятие финансового решения
для каждого альтернативного варианта ) :
· рассчитывается величина требуемых инвестиций (экспертная оценка ) , IC ;
· оценивается прибыль ( денежные поступления ) по годам Fi ;
· устанавливается значение коэффициента
дисконтирования , r ;
· определяются элементы приведенного потока , Pi ;
· рассчитывается чистый приведенный эффект ( NPV ) по
формуле:
NPV= E Pi - IC
· сравниваются значения NPV ;
· предпочтение отдается тому варианту , который имеет больший NPV ( отрицательное значение NPV свидетельствует об экономической нецелесообразности данного варианта ) .
Вторая группа методов продолжает использование в расчетах прогнозных значений F . Один из самых простых методов этой группы - расчет срока окупаемости инвестиции .Последовательность действий аналитика в этом случае такова :
· рассчитывается величина требуемых инвестиций , IC ;
· оценивается прибыль ( денежные поступления ) по годам , Fi ;
· выбирается тот вариант , кумулятивная прибыль по которому за меньшее число лет окупит сделанные инвестиции .
б) Число альтернативных вариантов больше двух .
n > 2
Процедурная сторона анализа существенно усложняется из-за множественности вариантов , техника “ прямого счета “ в этом случае практически не применима . Наиболее удобный вычислительный аппарат - методы оптимального программирования ( в данном случае этот термин означает “ планирование ” ) . Этих методов много ( линейное , нелинейное, динамическое и пр. ), но на практике в экономических исследованиях относительную известность получило лишь линейное программирование. В частности рассмотрим транспортную задачу как пример выбора оптимального варианта из набора альтернативных . Суть задачи состоит в следующем .
Имеется n пунктов производства некоторой продукции ( а1,а2,...,аn ) и k пунктов ее потребления ( b1,b2,....,bk ), где ai - объем выпуска продукции i - го пункта производства , bj - объем потребления j - го пункта потребления . Рассматривается наиболее простая , так называемая “закрытая задача ” , когда суммарные объемы производства и потребления равны . Пусть cij - затраты на перевозку единицы продукции . Требуется найти наиболее рациональную схему прикрепления поставщиков к потребителям , минимизирующую суммарные затраты по транспортировке продукции . Очевидно , что число альтернативных вариантов здесь может быть очень большим , что исключает применение метода “ прямого счета ” . Итак необходимо решить следующую задачу :
E E Cg Xg -> min
E Xg = bj E Xg = bj Xg >= 0
Известны различные способы решения этой задачи -распределительный метод потенциалов и др . Как правило для расчетов применяется ЭВМ .
При проведении анализа в условиях определенности могут успешно применяться методы машинной имитации , предполагающие множественные расчеты на ЭВМ . В этом случае строится имитационная модель объекта или процесса ( компьютерная программа ) , содержащая b-е число факторов и переменных , значения которых в разных комбинациях подвергается варьированию . Таким образом машинная имитация - это эксперимент , но не в реальных , а в искусственных условиях . По результатам этого эксперимента отбирается один или несколько вариантов , являющихся базовыми для принятия окончательного решения на основе дополнительных формальных и неформальных критериев .
Однако лишь немногие решения принимаются в условиях определённости. Большинство управленческих решений являются вероятностными.
Вероятностными называются решения, принимаемые в условиях риска или неопределённости.
К решениям принимаемых в условиях риска, относят такие, результаты которых не являются определёнными, но вероятность каждого результата известна. Вероятность определяется как степень возможности свершения данного события и изменяется от 0 до 1. Сумма вероятностей всех альтернатив должна быть равна единице. Вероятность можно определить математическими методами на основе статистического анализа опытных данных. Например, компании по страхованию жизни на основе анализа демографических данных могут с высокой степенью точности прогнозировать уровень смертности в определённых возрастных категориях и на этой базе определять страховые тарифы и объем страховых взносов, позволяющих выплачивать страховые премии и получать прибыль. Такая вероятность, рассчитанная на основе информации, позволяющей сделать статистически достоверный прогноз, называется объективной.
В ряде случаев, однако, организация не располагает достаточной информацией для объективной оценки вероятности возможных событий. В таких ситуациях руководителям помогает опыт, который показывает , что именно может произойти с наибольшей вероятностью. В этих случаях оценка вероятности является субъективной.
Пример решения, принятого в условиях риска ,- решение транспортной компании застраховать свой парк автомобилей. Финансовый менеджер не знает точно, будут ли аварии и сколько и какой ущерб они причинят, но из статистики транспортных происшествий он знает, что одна из десяти машин раз в году попадает в аварию и средний ущерб составляет $ 1 000 (цифры условные). Если организация имеет 100 автомашин, то за год вероятны 10 аварий с общим ущербом $ 10 000. В действительности же аварий может быть меньше, но ущерб больше, или наоборот. Исходя из этого, и принимается решение о целесообразности страхования транспортных средств и размере страховой суммы.
Анализ и принятие решений в условиях риска встречается на практике наиболее часто. Здесь пользуются вероятностным подходом, предполагающим прогнозирование возможных исходов и присвоение им вероятностей . При этом пользуются:
а) известными , типовыми ситуациями ( типа - вероятность появления герба при бросании монеты равна 0.5 ) ;
б) предыдущими распределениями вероятностей ( например,из выборочных обследований или статистики предшествующих периодов известна вероятность появления бракованной детали ) ;
в) субъективными оценками ,сделанными аналитиком самостоятельно либо с привлечением группы экспертов .
Последовательность действий аналитика в этом случае такова :
· прогнозируются возможные исходы Ak , k = 1 ,2 ,....., n ;
· каждому исходу присваивается соответствующая вероятность pk , причем
Е рк = 1
· выбирается критерий(например максимизация математического ожидания прибыли ) ;
· выбирается вариант , удовлетворяющий выбранному критерию .
Пример : имеются два объекта инвестирования с одинаковой прогнозной суммой требуемых капитальных вложений . Величина планируемого дохода в каждом случае не определенна и приведена в виде распределения вероятностей :
Проект АПроект ВПрибыльВероятностьПрибыльВероятность30000. 10 20000 . 1035000 . 2030000 . 2040000 . 4040000 . 3545000 . 2050000 . 2550000 . 1080000 . 10
Тогда математическое ожидание дохода для рассматриваемых проектов будет соответственно равно :
У ( Да ) = 0 . 10 * 3000 + ......+ 0 . 10 * 5000 = 4000
У ( Дб ) = 0 . 10 * 2000 +.......+ 0 . 10 * 8000 = 4250
Таким образом проект Б более предпочтителен . Следует , правда , отметить , что этот проект является
скачать реферат
1 2 3 4