Корреляционно-регрессионный анализ

признаётся значимым (существенным) при условии, если tрасч> tтабл . В таком случае практически невероятно, что найденные значения параметров обусловлены только случайными совпадениями.

Теперь я рассчитаю t-критерий Стьюдента для моей модели регрессии. - это средние квадратические отклонения.

Расчетные значения t-критерия Стьюдента:

По таблице распределения Стьюдента я нахожу критическое значение t-критерия для н= 32-2 = 30 . Вероятность б я принимаю 0,05. tтабл равно 2,042. Так как, оба значения ta0 и ta1 больше tтабл , то оба параметра а0 и а1 признаются значимыми и отклоняется гипотеза о том, что каждый из этих параметров в действительности равен 0 , и лишь в силу случайных обстоятельств оказался равным проверяемой величине.

Проверка адекватности регрессионной модели может быть дополнена корреляционным анализом. Для этого необходимо определить тесноту корреляционной связи между переменными х и у. Теснота корреляционной связи, как и любой другой, может быть измерена эмпирическим корреляционным отношением зэ , когда д2 (межгрупповая дисперсия) характеризует отклонения групповых средних результативного признака от общей средней:. Говоря о корреляционном отношении как о показателе измерения тесноты зависимости, следует отличать от эмпирического корреляционного отношения теоретическое. Теоретическое корреляционное отношение з представляет собой относительную величину, получающуюся в результате сравнения среднего квадратического отклонения выравненных значений результативного признака д, то есть рассчитанных по уравнению регрессии, со средним квадратическим отношением эмпирических (фактических) значений результативности признака у:

,

где ; .

Тогда .

Изменение значения з объясняется влиянием факторного признака. В основе расчёта корреляционного отношения лежит правило сложения дисперсий, то есть , где - отражает вариацию у за счёт всех остальных факторов, кроме х , то есть являются остаточной дисперсией:

.

Тогда формула теоретического корреляционного отношения примет вид:

,

или .

Подкоренное выражение корреляционного выражения представляет собой коэффициент детерминации (мера определенности, причинности). Коэффициент детерминации показывает долю вариации результативного признака под влиянием вариации признака-фактора. Теоретическое корреляционное выражение применяется для измерения тесноты связи при линейной и криволинейной зависимостях между результативным и факторным признаком. Как видно из вышеприведенных формул корреляционное отношение может находиться от 0 до 1. Чем ближе корреляционное отношение к 1, тем связь между признаками теснее.

Теоретическое корреляционное отношение применительно к моему анализу я рассчитаю двумя способами:

Полученное значение теоретического корреляционного отношения свидетельствует о возможном наличии среднестатистической связи между рассматриваемыми признаками. Коэффициент детерминации равен 0,62. Отсюда я заключаю, что 62% общей вариации работающих активов изучаемых банков обусловлено вариацией фактора капитала банков (а 38% общей вариации нельзя объяснить изменением размера капитала).

Кроме того, при линейной форме уравнения применяется другой показатель тесноты связи линейный коэффициент корреляции:

,

где n число наблюдений. Для практических вычислений при малом числе наблюдений (n=20ч30) линейный коэффициент корреляции удобнее исчислять по следующей формуле:

.

Значение линейного коэффициента корреляции важно для исследования социально-экономических явлений и процессов, распределение которых близко к нормальному. Он принимает значения в интервале: -1? r ? 1. Отрицательные значения указывают на обратную связь, положительные на прямую. При r = 0 линейная связь отсутствует. Чем ближе коэффициент корреляции по абсолютной величине к единице, тем теснее связь между признаками. И, наконец, при r = ±1 связь функциональная. Используя данные таблицы 1 я рассчитала линейный коэффициент корреляции r. Но чтобы использовать формулу для линейного коэффициента корреляции рассчитаем дисперсию результативного признака уy:

Квадрат линейного коэффициента корреляции r2 называется линейным коэффициентом детерминации. Из определения коэффициента детерминации очевидно, что его числовое значение всегда заключено в пределах от 0 до 1, то есть 0 ? r2 ? 1. Степень тесноты связи полностью соответствует теоретическому корреляционному отношению, которое является более универсальным показателем тесноты связи по сравнению с линейным коэффициентом корреляции. Факт совпадений и несовпадений значений теоретического корреляционного отношения з и линейного коэффициента корреляции r используется для оценки формы связи. Выше отмечалось, что посредством теоретического корреляционного отношения измеряется теснота связи любой формы, а с помощью линейного коэффициента корреляции только прямолинейной. Следовательно, значения з и r совпадают только при наличии прямолинейной связи. Несовпадение этих величин свидетельствует, что связь между изучаемыми признаками не прямолинейная, а криволинейная. Установлено, что если разность квадратов з и r не превышает 0,1 , то гипотезу о прямолинейной форме связи можно считать подтвержденной. В моем случае наблюдается примерное совпадение линейного коэффициента детерминации и теоретического корреляционного отношения, что дает мне основание считать связь между капиталом банков и их работающими активами прямолинейной.

Показатели тесноты связи, исчисленные по данным сравнительно небольшой статистической совокупности, могут искажаться действием случайных причин. Это вызывает необходимость проверки их существенности, дающей возможность распространять выводы по результатам выборки на генеральную совокупность. Для оценки значимости коэффициента корреляции r используют t-критерий Стьюдента, который применяется при t-распределении, отличном от нормального. При линейной однофакторной связи t-критерий можно рассчитать по формуле:

,

где (n - 2) число степеней свободы при заданном уровне значимости б и объеме выборки n. Полученное значение tрасч сравнивают с табличным значением t-критерия (для б = 0,05 и 0,01). Если рассчитанное значение tрасч превосходит табличное значение критерия tтабл, то практически невероятно, что найденное значение обусловлено только случайными колебаниями (то есть отклоняется гипотеза о его случайности). Так, для коэффициента корреляции между капиталом и работающими активами получается:

Если сравнить полученное tрасч с критическим значением из таблицы Стьюдента, где н=30, а б=0,01 (tтабл=2,750), то полученное значение t-критерия будет больше табличного, что свидетельствует о значимости коэффициента корреляции и существенной связи между капиталом и работающими активами. Таким образом, построенная регрессионная модель y=245,75+1,42x в целом адекватна, и выводы полученные

скачать реферат
первая   ... 2 3 4 5 6
Рефераты / Статистика /