Методы сглаживания и выравнивания динамических рядов
что такой тренд не достаточно полно отражает основную закономерность развития явления.
б. Метод укрупнения интервалов, при котором производится увеличение протяженности временных промежутков, и рассчитываются новые значения уровней ряда.
в. Метод скользящей средней. Данный метод применяется для характеристики тенденции развития исследуемой статистической совокупности и основан на расчете средних уровней ряда за определенный период. Последовательность определения скользящей средней:
- устанавливается интервал сглаживания или число входящих в него уровней. Если при расчете средней учитываются три уровня, скользящая средняя называется трехчленной, пять уровней пятичленной и т.д. Если сглаживаются мелкие, беспорядочные колебания уровней в ряду динамики, то интервал (число скользящей средней) увеличивают. Если волны следует сохранить, число членов уменьшают.
- Исчисляют первый средний уровень по арифметической простой:
y1 = y1/m, где
y1 I-ый уровень ряда;
m членность скользящей средней.
- первый уровень отбрасывают, а в исчисление средней включают уровень, следующий за последним уровнем, участвующем в первом расчете. Процесс продолжается до тех пор, пока в расчет y будет включен последний уровень исследуемого ряда динамики yn.
- по ряду динамики, построенному из средних уровней, выявляют общую тенденцию развития явления.
Отрицательной стороной использования метода скользящей средней является образование сдвигов в колебаниях уровней ряда, обусловленных "скольжением" интервалов укрупнения. Сглаживание с помощью скользящей средней может привести к появлению "обратных" колебаний, когда выпуклая "волна" заменяется на вогнутую.
В последнее время стала рассчитываться адаптивная скользящая средняя. Ее отличие состоит в том, что среднее значение признака, рассчитываемое также как описано выше, относится не к середине ряда, а к последнему промежутку времени в интервале укрупнения. Причем предполагается, что адаптивная средняя зависит от предыдущего уровня в меньшей степени, чем от текущего. То есть., чем больше промежутков времени между уровнем ряда и средним значением, тем меньшее влияние оказывает значение этого уровня ряда на величину средней.
г. Метод экспоненциальной средней. Экспоненциальная средняя это адаптивная скользящая средняя, рассчитанная с применением весов, зависящих от степени "удаленности" отдельных уровней ряда от среднего значения. Величина веса убывает по мере удаления уровня по хронологической прямой от среднего значения в соответствии с экспоненциальной функцией, поэтому такая средняя называется экспоненциальной. На практике применяется многократное экспоненциальное сглаживания ряда динамики, которое используется для прогнозирования развития явления.
Вывод: способы, включенные в первую группу, ввиду применяемых методик расчета предоставляют исследователю очень упрощенное, неточное, представление о тенденции в ряду динамики. Однако корректное применение этих способов требует от исследователя глубины знаний о динамике различных социально - экономических явлений.
1.2.2 Методы "аналитического" выравнивания
Более точным способом отображения тенденции динамического ряда является аналитическое выравнивание, т. е. выравнивание с помощью аналитических формул. В этом случае динамический ряд выражается в виде функции у (t), в которой в качестве основного фактора принимается время t, и изменения аргумента функции определяют расчетные значения уt.
Фактическими (или эмпирическими) уровнями ряда динамики называют исходные данные об изменении явления, т. е. данные, полученные опытным путем, посредством наблюдения. Они обозначаются уi. Расчетными (или теоретическими) уровнями ряда называют значения, полученные в результате подстановки в уравнение тренда значений t, и обозначают их.
????? ?????????????? ???????????? ????????????? ???? ???????? ??????????? ????????????? ??? ??????????? ??????????? f(t) . ?? ???????? ?? ?????????? ?????????? ???? ?????? ??? ? ??????? ????????? ??????? f(t) , ? ????? ??????????? ????????? ?????????? ?? ?????????. ??????? f(t) ???????? ????? ??????? , ????? ??? ?????? ?????????????? ?????????? ?????????? ???????? .
???? ????? ??? ???????????? ???????????? ????????? ??????????? :
???????? ;
?????????????? ;
????????????????
??? ).
1)???????? ??????????? ?????????? ? ??? ??????? , ????? ? ???????? ????????? ???? ??????????? ????? ??? ????? ?????????? ?????????? ? ?????? ???????? , ?? ??????????? ????????? ?? ? ?????????? , ?? ? ????????.
2)?????????????? ??????????? ???????????? , ???? ?????????? ?????? ???????? ???? ?? ???? ???????????? ????????? ????????? ???????? , ?? ?????????? ?????? ???????? ?????????? ?????? ????????? (???????? ??????? ???????) ??????? ????????? ???????? ?? ????????? .
3)???????????????? ??????????? ??????????? , ???? ? ???????? ????????? ???? ??????????? ???? ????? ??? ????? ?????????? ????????????? ???? (???????????? ?????? ?????? ????? , ?????? ???????? , ????????????? ?????) , ???? , ??? ?????????? ?????? ??????????? , -- ???????????? ? ????????? ??????????? ?????????????? ????? (?????? ?????? ????? ?????? ?? ?????? ????? , ?????? ????????????? ????? ?????? ?? ????????????? ??? ?????? ????? ? ?.?.)
Таким образом, целью аналитического выравнивания является:
- определение вида функционального уравнения;
- нахождения параметров уравнения;
- расчет "теоретических", выровненных уровней, отображающих основную тенденцию ряда динамики.
Графическое отображение изменения уровней ряда играет большую роль в применении данного вида выравнивания. Оно позволяет ускорить процедуру анализа и увеличить степень наглядности полученных результатов.
Сезонность изменения динамических рядов, имеющих внутригодичную цикличность, зависящие от календарного периода года, явлениями природы, праздниками и др. Например, объем продаж продукции меховой фабрики вырастет в октябре, в ноябре достигнет максимума, снизится к марту, и затем до сентября - октября будет держаться на очень низком уровне. В качестве примера, интересно сравнить сезонные изменения уровня цен в России и странах Западной Европы. В России уровень цен в предпраздничные дни (например, рождество, Новый год, 9 мая, 1 сентября и т. д.) заметно растет. Тогда как в Западной Европе, как правило, в предпраздничные дни проводятся распродажи, т. е. в большинстве своем цены падают.
Явления, подверженные сезонным изменениям, необходимо исследовать на предмет наличия основной тенденции развития. Для этого необходимо распределить объем изменения явления между сезонной составляющей и основной тенденцией.
Изучение и измерение сезонности ряда динамики осуществляется с помощью специального показателя индекса сезонности . Существует несколько вариантов анализа динамики с помощью индекса сезонности.
??????? ?????????? ?????????? , ?? ??????? ??? ??????????? ??????? ???? ? ?????? ??? ???????? ??????? t ?????? ???????? ?????? ???? ?????? , ???????????? ?? ????????? ????????? f(t) . ??? ??????? ?????????? ?????? ??????????
скачать реферат
1 2 3 4 5