Балансовая модель

БАЛАНСОВАЯ МОДЕЛЬ Изучение балансовых моделей, представляющих собой одно из важнейших направлений и экономико-математических исследований, должно служить объектом изучения отдельной дисциплины. Наша цель проиллюстрировать на примере балансовых расчетов применение основных понятий линейной алгебры.

ЛИНЕЙНАЯ БАЛАНСОВАЯ МОДЕЛЬ

Пусть рассматривается экономическая система, состоящая из n взаимосвязанных отраслей производства. Продукция каждой отрасли частично идет на внешнее потребление ( конечный продукт ), а частично используется в качестве сырья, полуфабрикатов или других средств производства в других отраслях, в том числе и в данной. Эту часть продукции называют производственным потреблением. Поэтому каждая из рассматриваемых отраслей выступает и как производитель продукции ( первый столбец таблицы 1 ) и как ее потребитель ( первая строка таблицы 1 ). Обозначим через xi валовый выпуск продукции i-й отрасли за планируемый период и через yi конечный продукт, идущий на внешнее для рассматриваемой системы потребление ( средства производства других экономических систем, потребление населения, образование запасов и т.д. ). Таким образом, разность xi - yi составляет часть продукции i-й отрасли, предназначенную для внутрипроизводственного потребления. Будем в дальнейшем полагать, что баланс составляется не в натуральном, а в стоимостном разрезе. Обозначим через xik часть продукции i-й отрасли, которая потребляется k-й отраслью, для обеспечения выпуска ее продукции в размере хk.

Таблица 1 № потребление итого на конечный валовый отрас. внутре продукт выпуск производ. ( уi ) ( хi ) № 1 2 … k … n потребление отрас. ( е хik )

1 х11 х12 … х1k … х1n е х1k у1 х1

2 х21 х22 … х2k … х2n е х2k у2 х2

i хi1 xi2 xik xin е xik yi xi

n xn1 xn2 xnk xnn е xnk yn xn

итого произв. затраты е хi1 е xi2 е xik е xin в k-ю отрасль

Очевидно, величины, расположенные в строках таблицы 1 связаны следующими балансовыми равенствами :

х1 - ( х11 + х12 + + х1n ) = у1 х2 - ( х21 + х22 + … + х2n ) = у2 ( 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . xn - ( xn1 + xn2 + … + xnn ) = yn

Одна из задач балансовых исследований заключается в том, чтобы на базе данных об исполнение баланса за предшествующий период определить исходные данные на планируемый период. Будем снабжать штрихом ( хik , yi и т.д. ) данные, относящиеся к истекшему периоду, а теми же буквами, но без штриха аналогичные данные, связанные с планируемым периодом. Балансовые равенства ( 1 ) должны выполняться как в истекшем, так и в планируемом периоде. Будем называть совокупность значений y1 , y2 , … , yn , характеризующих выпуск конечного продукта, ассортиментным вектором : _ у = ( у1 , у2 , … , yn ) , ( 2 )

а совокупность значений x1 , x2 , … , xn ,определяющих валовый выпуск всех отраслей вектор-планом : _ x = ( x1 , x2 , … , xn ). ( 3 )

Зависимость между двумя этими векторами определяется балансовыми равенствами ( 1 ). Однако они не дают возможности определить по заданному, например, вектор у необходимый для его обеспечения вектор-план х, т.к. кроме искомых неизвестных хk , содержат n2 неизвестных xik , которые в свою очередь зависят от xk. Поэтому преобразуем эти равенства. Рассчитаем величины aik из соотношений :

xik aik = ( i , k = 1 , 2 , … , n ). xk

Величины aik называются коэффициентами прямых затрат или т ехнологическими коэффициентами. Они определяют затраты продукций i-й отрасли, используемые k-й отраслью на изготовление ее продукции, и зависят главным образом от технологии производства в этой k-й отрасли. С некоторым приближением можно полагать, что коэффициенты aik постоянны в некотором промежутке времени, охватывающим как истекший, так и планируемый период, т.е., что

xik xik = = aik = const ( 4 ) xk xk

Исходя из этого предложения имеем

xik = aikxk , ( 5 )

т.е. затраты i-й отрасли в k-ю отрасль пропорциональны ее валовому выпуску, или, другими словами, зависят линейно от валового выпуска xk. Поэтому равенство ( 5 ) называют условием линейности прямых затрат. Рассчитав коэффициенты прямых затрат aik по формуле ( 4 ), используя данные об исполнении баланса за предшествующий период либо определив их другим образом, получим матрицу

a11 a12 … a1k … a1n a21 a22 … a2k … a2n A= …………………. ai1 ai2 … aik … ain an1 an2 … ank … ann

которую называют матрицей затрат. Заметим, что все элементы aik этой матрицы неотрицательны. Это записывают сокращено в виде матричного неравенства А>0 и называют такую матрицу неотрицательной. Заданием матрицы А определяются все внутренние взаимосвязи между производством и потреблением, характеризуемые табл.1 Подставляя значения xik = aik = xk во все уравнения системы ( 1 ), получим линейную балансовую модель :

x1 - ( a11x1 + a12x2 + … + a1nxn ) = y1 x2 - ( a21x1 + a22x2 + … + a2nxn ) = y2 ( 6 ) …………………………………… xn - ( an1x1 + an2x2 + … + annxn ) = yn ,

характеризующую баланс затрат - выпуска продукции, представленный в табл.1 Система уравнений ( 6 ) может быть записана компактнее, если использовать матричную форму записи уравнений: _ _ _ Ех - Ах = У , или окончательно _ _ ( Е - А )х = У , ( 6 )

где Е единичная матрица n-го порядка и

1-a11 -a12 … -a1n E - A= -a21 1-a22 … -a2n ………………… -an1 -an2 … 1-ann

Уравнения ( 6 ) содержат 2n переменных ( xi и yi ). Поэтому, задавшись значениями n переменных, можно из системы ( 6 ) найти остальные n - переменных. Будем исходить из заданного ассортиментного вектора У = ( y1 , y2 , … , yn ) и определять необходимый для его производства вектор-план Х = ( х1 , х2 , … хn ). Проиллюстрируем вышеизложенное на примере предельно упрощенной системы, состоящей из двух производственных отраслей:

табл.2

№ отрас Потребление Итого Конечный Валовый № затрат продукт выпуск отрас 1 2

0.2 0.4 1 100 160 260 240 500

0.55 0.1 2 275 40 315 85 400

Итого затрат 575 в k-ю 375 200 отрасль … 575

Пусть исполнение баланса за предшествующий период характеризуется данными, помещенными в табл.2 Рассчитываем по данным этой таблицы коэффициенты прямых затрат:

100 160 275 40 а11 = = 0.2 ; а12 = = 0.4 ; а21 = = 0.55 ; а22 = = 0.1 500 400 500 400

Эти коэффициенты записаны в табл.2 в углах соответствующих клеток. Теперь может быть записана балансовая модель ( 6 ), соответствующая данным табл.2

х1 - 0.2х1 - 0.4х2 = у1 х2 - 0.55х1 - 0.1х2 = у2

Эта система двух уравнений может быть использована для определения х1 и х2 при заданных значениях у1 и у2, для использования влияния на валовый выпуск любых изменений в ассортименте конечного продукта и т.д. Так, например, задавшись у1=240 и у2=85, получим х1=500 и х2=400, задавшись у1=480 и у2=170, получим х1=1000 и х2=800

скачать реферат
1 2 3 4
Рефераты / Менеджмент /