Методология статистического анализа функционирования финансово-промышленных групп
n-го предприятия ТЦ;
n количество предприятий-участников ТЦ.
Таким образом, для определения качества взаимодействия предприятий в рамках ТЦ необходимо соотнести интегральную эффективность ТЦ и среднюю эффективность предприятий-участников ТЦ.
Пример 2.4. Рассмотрим ТЦ, состоящую из 4-рех предприятий, которые имеют следующие исходные показатели для анализа, представленные в таблице 2.6.
Таблица 2.6
Данные по предприятиям
ПредприятияНаименование1234Чистая прибыль предприятия i, млн. руб.25301034Валовые активы предприятия i, млн. руб.80905070
Проведем необходимые вычисления и заполним таблицу 2.7:
Э1 = 25 / 80 = 0,31;
Э2 = 30 / 90 = 0,33;
Э3 = 10 / 50 = 0,20;
Э4 = 34 / 70 = 0,49;
ЭЦ = (25+30+10+34) / (80+90+50+70) = 0,34;
ЭСР = (0,31/2 + 0,33 + 0,20 + 0,49/2) / 3 = 0,31;
ПВ = ЭЦ / ЭСР = 0,34 / 0,31 = 1,096.
Таблица 2.7
Определение показателя взаимодействия
Эффективность предприятия i0,310,330,200,49Эфпг0,34Эср0,31ПВ1,096
По данным таблицы 2.7 можно сделать вывод, что функционирование предприятий в качестве технологической цепочки более эффективно, чем их функционирование как самостоятельных предприятий.
Измерение эффективности всей финансово-промышленной группы производится по формуле:
,
где
ЭФПГ эффективность функционирования финансово-промышленной группы;
ПФПГ = (S ЧПi) + ЧПУПР;
ЧПi чистая прибыль i-той технологической цепочки;
ЧПУПР чистая прибыль, полученная управляющей компанией ФПГ при размещении свободных денежных средств;
ВАФПГ валовые активы финансово-промышленной группы:
ВАi валовые активы i-той ТЦ;
Зi дебиторская задолженность i-тому предприятию - участнику ТЦ от следующего за ним в технологической цепочке (соответственно n-ному предприятию должен потребитель конечной продукции ТЦ, который не является членом ФПГ);
n количество предприятий в i-той ТЦ;
k количество ТЦ, действующих в рамках ФПГ;
ЗУПР затраты на содержание управленческого аппарата ФПГ.
Таким образом, на первом этапе контроля выясняется насколько эффективно действуют технологические цепочки как структурные подразделения ФПГ, а также вся группа в целом.
На следующем этапе проводится изучение эффективностей ТЦ в динамике.
Второй этап контроля: анализ влияния факторов на изменение показателя взаимодействия
Допустим, что в ходе функционирования производственного процесса у руководства ТЦ или финансово-промышленной группы возникают два очень важных вопроса:
1. Под влиянием каких факторов произошло изменение показателя взаимодействия?
2. Изменение каких факторов оказало наибольшее влияние на отклонение фактических показателей от запланированных на этапе оценки экономической эффективности производственного цикла?
Ответы на эти вопросы необходимо получить на этапе контроля производственного процесса для своевременного выявления и устранения причин вызвавших изменение [167].
Для ответа на поставленные вопросы проводится первый этап анализа функционирования ТЦ, который сводится к выявлению роли факторов факторный анализ показателя взаимодействия.
Первый шаг анализа преобразование формулы показателя взаимодействия в мультипликативную модель [22, 30, 79, 89, 96, 118] вида
,
где
Yрезультирующая функция (показатель взаимодействия технологической цепочки);
X вектор факторов, от которых зависит результирующая функция.
Для проведения преобразования воспользуемся формулами (1.3) и (2.7).
Подставив правую часть формулы (1.3) в формулу (2.7), получим:
ЧПЦ 1 1
ПВ = = ЧПЦ * * . (2.8)
ВАЦ * ЭСР ВАЦ ЭСРЧтобы избавиться от единиц измерения, в формулу (2.8) в знаменатель при ЧПЦ и в числитель при ВАЦ вместо единиц введем нормирующий множитель (нм).
Мультипликативная модель ПВ будет иметь вид:
ЧПЦ нм 1
ПВ = * * ,
нм ВАЦ ЭСРгде
ПВ результирующая функция;
ЧПЦ
фактор 1;
нм
нм
фактор 2;
ВАЦ
1
фактор 3.
ЭСР
Применив к мультипликативной модели ПВ метод цепных подстановок [43, 50, 56, 90, 112, 117, 119, 124], можно ответить на поставленные вопросы.
Для ответа на первый вопрос необходимо воспользоваться алгоритмом А, суть которого состоит в следующем:
1.Определяются исходные значения факторов в начальный (X0) и конечный (X1) периоды исследования.
2.Определяется приращение (Dxi) каждого фактора за исследуемый период времени
Dxi = xi1 xi0 , i = 1, ... , n (n количество факторов),
где
хi0 величина i-го фактора в начальном периоде;
хi1 величина i-го фактора в конечном периоде.
3.Вычисляется влияние приращения каждого фактора на приращение показателя взаимодействия за исследуемый период времени
DYxi = * Dxi * , (n количество факторов),
при этом
DY = DYxi .
4.По полученному значению DYxi определяется, изменение какого фактора оказало максимальное влияние на изменение значения показателя взаимодействия предприятия.
5.Если период исследования состоит из нескольких промежутков времени, то оценить влияние изменения факторов на изменение показателя взаимодействия можно на каждом промежутке. В этом случае конечное значение фактора на предыдущем интервале является начальным значением для последующего.
Для ответа на первый вопрос необходимо воспользоваться алгоритмом Б:
1.Определяются исходные плановые значения факторов (X0) и фактические значения (X1) в определенном периоде исследования.
2.Определяется отклонение фактического значения от планового (Dxi) каждого фактора в исследуемом периоде времени
Dxi = xi1 xi0 , i = 1, ... , n (n количество факторов),
где
хi0 плановое значение i-го фактора в исследуемом периоде;
хi1 фактическое значение i-го фактора в исследуемом периоде.
3.Вычисляется влияние отклонения каждого фактора на итоговое отклонение фактического значения показателя взаимодействия от планового значения
DYxi = * Dxi * , (n количество факторов),
при этом
DY = DYxi .
4.По полученному значению DYxi определяется, отклонение какого фактора оказало максимальное влияние на отклонение фактического значения ПВ от планового значения.
5.Если период исследования состоит из нескольких промежутков времени, то оценить влияние отклонения фактических значений факторов от плановых значений на отклонение фактического значения ПВ от планового можно на каждом промежутке. В этом случае для каждого промежутка времени необходимо иметь плановые и фактические значения соответствующих факторов. Имея исходные данные необходимо действовать по алгоритму Б.
Пример2.5.Пусть имеются результирующая функция Y и факторы x1, x2, x3, заполним таблицу 2.8:
Таблица 2.8
Начальный периодКонечный периодРезультирующая функцияY0Y1Фактор 1x10x11Фактор 2x20x21Фактор 3x30x31
Тогда влияние изменения первого фактора на изменение результирующей функции
DYх1 = (х11 - х10) * х21 * х31 ;
влияние изменения второго фактора на изменение результирующего показателя
DYх2 = х10 * (х21 - х20) * х31 ;
влияние изменения третьего фактора на изменение результирующего показателя:
DYх3 = х10 * х20 * (х31 - х30).
Проверить правильность расчетов можно с помощью следующей формулы:
DY = Y1 - Y0 = DYх1 + DYх2 + DYх3 .
Применив метод цепных подстановок, можно выявить изменение какого из факторов в наибольшей степени повлияло на снижение
скачать реферат
первая ... 12 13 14 15 16 17 18 ... последняя